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COMMENT 

Surface transition and E expansion 

A M Nemirovsky and Karl F Freed 
The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA 

Received 7 May 1985 

Abstract. We provide the first description of the surface transition that goes beyond 
mean-field theory and that develops a systematic &-expansion method for this transition. 
The theory exhibits the emergence of (d - 1)-dimensional physics with a complicated 
dependence on c (the surface interaction parameter). A calculation is provided for the 
lowest correction to the shift in the critical temperature (from its mean-field value). 

Surface effects on phase transitions are of considerable interest both theoretically and 
experimentally. A comprehensive review is given by Binder (1983). Using mean-field 
theory analysis, four phases can be identified according to the values of the temperature 
t ( t cc T - c, where c is the bulk transition temperature) and the surface interaction 
parameter c (Binder 1983). These phases are as follows. When CS 0 the system orders 
at the bulk transition temperature c. For large values of IcI, i.e. IcI >> t ’ l ’ ,  the transition 
is called ordinary, while the special transition occurs at small values of Icl where 
IcI << t’l’. When c > 0 the surface orders spontaneously at a higher temperature t = c’, 
while the bulk remains disordered. For large values of c, i.e. c >> t”’, the latter yields 
the surface transition. Finally, as the temperature is further lowered (with c > O )  
through the bulk critical temperature, the bulk also orders at the extraordinary 
transition. 

Renormalisation group methods of field theory have been utilised to study semi- 
infinite (or infinite) systems in d dimensions (d  = 4- E )  with a (d  - 1)-dimensional 
free surface (Lubensky and Rubin 1973, 1975, Bray and Moore 1977, Reeve and 
Guttman 1981, Diehl and Dietrich 1980, 1981a, b, 1983a, b, Diehl et a1 1985). The 
most widely used model is a d-dimensional (infinite or semi-infinite) N-vector model 
with an additional surface term. This model has been applied to the study of the 
ordinary ( c  + -CO) and special (c + 0) transitions. Calculations of scaling functions 
can be performed for arbitrary values of c S 0 and t > 0, providing the full crossover 
from the special to the ordinary transitions (Goldschmidt 1983, Goldschmidt and 
Jasnow 1984, Gompper 1984, Nemirovsky and Freed 1985a). In fact, the results are 
even valid for c > 0 in the symmetric phase as long as the system is not too close to 
the surface transition, i.e. for c < t’ /’ .  

As we approach this surface transition, the E expansion breaks down; the ratio of 
first-order corrections to zeroth-order ones is of order ( t -c ’ ) - ’  which is becoming 
infinite so the series expansion becomes meaningless. Hence, the only currently 
available theory of the surface transition comes from mean-field theory which is 
inadequate to describe the strong fluctuations that are present near that transition. At 
the surface transition the ordered surface region is expected to be a slab of infinite 
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extent in ( d  - 1) dimensions and of thickness given by c-’  in the mean-field approxima- 
tion. Properties of this critical slab exhibit the behaviour of the ( d  - 1)-dimensional 
bulk, but they depend non-trivially on c-’. This complicated c dependence is of central 
interest. One of the difficulties cited above with E techniques for the surface transition 
arises because the theory is attempting to describe the (d  - 1)-dimensional physics of 
the critical slab with an inappropriate d-dimensional expansion, while direct (d - 
1) -dimensional calculations omit the essential c dependence of the slab’s properties. 

The surface transition is a beautiful example of dimensional reduction, i.e. the 
emergence of d‘-dimensional physics out of an underlying d-dimensional system. 
Recently, we have developed a formalism that is applicable to all problems where 
dimensional reduction occurs as some (internal or external) parameter of the model 
(like c-’) becomes ‘very small’ (Nemirovsky and Freed 1985b). Then the presence of 
two small parameters, c-’ and the coupling constant U, forms the basis for a new 
&-expansion method designed to study the dimensional reduced ( d  + d - 1) transitions 
and the non-trivial dependence of the critical slab properties on c. 

Our general theory of dimensional reduction is utilised here for the first time to 
consider corrections to the mean-field description of the surface transition. A d- 
dimensional theory is used to evaluate a c-dependent effective free energy functional 
for the lowest mode of the order parameter (see below) with small corrections provided 
by higher modes. The effective functional corresponds to a system of infinite extent 
in (d  - 1) dimensions which has the same internal symmetry as that of the original 
d-dimensional theory. This automatically implies that critical exponents are those of 
a bulk ( d  - 1) system in accordance with what many have argued (see, e.g., Bray and 
Moore 1977). However, critical amplitudes are calculated as non-trivial functions 
of c. 

The effective free energy functional can be studied by various methods such as 
numerical ones, real space renormalisation group, E’  = 4 - d expansions, etc. Here we 
calculate the shift in the critical temperature to O(E’) and evaluate the c dependent 
( d  - 1)-dimensional effective free energy functional to lowest order. Consequently, 
this very interesting surface transition is now amenable to theoretical treatment that 
includes the important fluctuations which are absent in previous mean-field theories. 

We start with the partition function Z given by 

F (41=  lom dz 1 d“’p( 4 ( p ,  z)i[-V2+ t o - 2 c ~ ~ ( z ) 1 4 ( ~ ,  z)+: ( 4 2 ( ~ ,  z)l2),  ( l a )  

where F is the d-space Landau free energy functional, 4(p,  z)  is the N component 
order parameter, p is a ( d  - 1)-dimensional vector perpendicular to the ( d  - 
1)-dimensional surface at z = 0. The parameters toot T -  C, uo and co are the bare 
temperature, coupling constant and surface interaction parameter, respectively. 

The order parameter 4 ( k ,  z), where k is the Fourier variable conjugate to p, can 
be expanded in normal modes as 

where {f,} are the normalised eigenfunctions of the ‘Hamiltonian’ H for a single 
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particle in an attractive 6 potential, i.e. 

Equation (3) is easily solved to obtain 

f o ( z )  = ( 2 ~ ) ’ ~ ’  exp(-cz) Eo= -c’ (3a) 

f,(z) = ( ~ c ) ” ~ [ w ( w ’ +  I)-’/’ cos wcz - ( w 2 +  I ) - ’ /~  sin wcz] 
(3b) 

E, = w2c2 w > o .  

The criterion for dimensional reduction is that the gap El -Eo to the lowest excited 
state grows unbounded as the length c-’ that drives the dimensional reduction becomes 
‘small’, so the lowest mode becomes dominant. Equation (3) shows this criterion to 
be satisfied for c>O. On the other hand, when c<O, equation (3) has a repulsive 
delta potential for the special and ordinary transitions. There are only continuum 
states, so no energy gap arises to produce a dimensional reduction to lower dimensional 
physics for these cases. The presence of the gap for c > 0 implies that near the surface 
transition the lowest mode dominates, while higher ones only provide corrections. 

The free energy functional (1 a )  can be rewritten in terms of normal modes as 

+- dk, d k 2 d k , d k 4 ( 2 ~ ) ~ - ’ S ( k l + k 2 + k 3 + k d )  
lloCo 4! I 

and 1 dk stands for 5 dd- ’k / (2~)d -1 .  The w > 0 modes can be integrated out using 
techniques we have recently discussed (Nemirovsky and Freed 1985b). The effective 
field theory for the 4,(k) mode contains all diagrams with lowest mode external legs 
and a sum over all w > 0 modes as internal lines. Feynman rules are easily derived 
from (4). A consistent &-expansion procedure emerges by use of the formal scheme 
io- uoco as described by us for finite size scaling (Nemirovsky and Freed 1985b, c). 
Analogous techniques have been utilised to study finite temperature field theories close 
to the transition (Ginsparg 1980). 

The first contribution ato to the quadratic term in 4,(k) of equation (4) is calculated 
to be 

ai0 = uoco[:( N + 2)] lom dw dk SmWw[ k2+  io+ ( E ,  -- Eo)]-’ 

=uo[b(N+2)] lomdzfi(z) l dkG‘ (k , z , z ) ,  (5) 
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where G’(k, z, z’) is the subtracted propagator that contains all modes but the lowest: 

( 6 a )  

(6b)  

G’(k, z, z’) = G(k,  z, z‘) -2c0 exp[-co(z+ z‘)](k2+ io)-’ 

G(k, z, z’) = ( ~ ~ ) - ‘ { ~ x P ( - P ~ z - z ’ ~ ) + [ ( P -  C ~ ) ( P + ~ ~ ) - ’ I  exp[-c~(z+z’)lI  

p = (k2+ to)’/’. 

The shifted critical temperature TB = TB( to, co, uo) given by TB = io+ Sio can be obtained 
with the aid of equations ( 3 a ) ,  (5) and ( 6 )  after some algebra. TB is renormalised by 
the usual d-dimensional bulk counter-terms, so the renormalised shifted temperature 
T is given by 

T(f, c, TB(Z~fi zcc, [ (2~)d /sd lzuU) ,  (7) 

where the factor (2?7)d/sd, with S d  the surface of a unit sphere in d space, is introduced 
for convenience and where the renormalisation constants Z,, 2, and 2, are obtained 
from the d space renormalisations as (Goldschmidt 1983, Nemirovsky and Freed 1985a) 

( 7 a )  z, = 1 + [i(  N + 2 ) ]  U + O( u 2 )  Z, = 1 + [A(  N + 2)lu + O( U’) 

and 

Z,=l+O(u).  

T(f, c, U )  = t - c 2 + c 2 { u [ ~ ( N + 2 ) ] ( - ~ l n  c2+3)+O(u3/’)} 

Then T is found to be 

(8) 

and the c dependent effective free energy functional is given to lowest order by 

x 4 0 ( k l ) ~ 0 ( k 2 ) 4 0 ( k 3 ) ~ O ( k 4 ) + . .  . . (9) 

This effective free energy functional (9) has the same form as that of an O( N)44 field 
theory in ( d  - 1) dimensions, but equation (8) shows that it has a non-trivial c 
dependence. Equation (9) can be studied by various methods (numerical ones, real 
space renormalisation group, E’  = 4 - ( d  - 1) expansions, etc). For definitiveness we 
utilised E’  expansions (though corrections from 4: and higher terms may be relevant 
for d = 3 and d ’  = 2). At the fixed point U* = 6 ~ ’ / (  N + 8 )  the shifted temperature T 
of (8) becomes 

T (  f, c, U*) = t - c2+ dc2{[( N + 2)/( N + 8)] (-; In c2 + 3) + 0(( E ’ ) ” ’ ) }  

= t - C “  + &’c2{3[( N + 2)/( N + 8)] +O(( &’)’I2)} 

a = 2 -t-i[ ( N  + 2 ) / (  N + 8 ) ] ~ ’ +  O( E ‘ ~ / ~ )  

displaying the non-trivial c dependence emerging along with the expected ( d  - 1)- 
dimensional physics. 

This comment is the first description of how to go beyond mean-field theory with 
systematic &-expansion methods for the surface transition. The dimensional reduction 
occurring for the surface transition is thus demonstrated to parallel that driven by 
finite dimensions for the system (finite size scaling). A central difference for the surface 
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transition is the fact that the dominant mode is not homogeneous, while our previous 
treatment of dimensional reduction in finite size scaling (Nemirovsky and Freed 1985b) 
using periodic boundary conditions involves a homogeneous dominant mode. Both 
problems result in ( d  - 1)-dimensional physics, but with an essential (e.g. power law) 
dependence on the confining lergth scale. 
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